Key FeaturesA step-by-step guide to building recommendation engines that are personalized, scalable, and real timeGet to grips with the best tool available on the market to create recommender systemsThis hands-on guide shows you how to implement different tools for recommendation engines, and when to use whichBook DescriptionA recommendation engine (sometimes referred to as a recommender system) is a tool that lets algorithm developers predict what a user may or may not like among a list of given items. Recommender systems have become extremely common in recent years, and are applied in a variety of applications. The most popular ones are movies, music, news, books, research articles, search queries, social tags, and products in general.The book starts with an introduction to recommendation systems and its applications. You will then start building recommendation engines straight away from the very basics. As you move along, you will learn to build recommender systems with popular frameworks such as R, Python, Spark, Neo4j, and Hadoop. You will get an insight into the pros and cons of each recommendation engine and when to use which recommendation to ensure each pick is the one that suits you the best.During the course of the book, you will create simple recommendation engine, real-time recommendation engine, scalable recommendation engine, and more. You will familiarize yourselves with various techniques of recommender systems such as collaborative, content-based, and cross-recommendations before getting to know the best practices of building a recommender system towards the end of the book!What you will learnBuild your first recommendation engineDiscover the tools needed to build recommendation enginesDive into the various techniques of recommender systems such as collaborative, content-based, and cross-recommendationsCreate efficient decision-making systems that will ease your workFamiliarize yourself with machine learning algorithms in different frameworksMaster different versions of recommendation engines from practical code examplesExplore various recommender systems and implement them in popular techniques with R, Python, Spark, and othersAbout the AuthorSuresh Kumar Gorakala is a Data scientist focused on Artificial Intelligence. He has professional experience close to 10 years, having worked with various global clients across multiple domains and helped them in solving their business problems using Advanced Big Data Analytics. He has extensively worked on Recommendation Engines, Natural language Processing, Advanced Machine Learning, Graph Databases. He previously co-authored Building a Recommendation System with R for Packt Publishing. He is passionate traveler and is photographer by hobby.Table of ContentsIntroduction to Recommendation EnginesBuild Your First Recommendation EngineRecommendation Engines ExplainedData Mining Techniques Used in Recommendation EnginesBuilding Collaborative Filtering Recommendation EnginesBuilding Personalized Recommendation EnginesBuilding Real-Time Recommendation Engines with SparkBuilding Real-Time Recommendations with Neo4jBuilding Scalable Recommendation Engines with MahoutWhat Next - The Future of Recommendation Engines
Dear publishers and self-publisher, kindly be informed that Book Capital & E-Sentral are now using the same publisher panel for your convenience in uploading and updating your eBook content.
If you wish to proceed to log in/ sign up, click Yes. Otherwise, kindly click the X icon to close.